Life Sciences: Sample to Insights in a Clinical Set Up

Advanced scientific breakthroughs are resulting in innovative therapies that can improve the quality of life of patients suffering from chronic diseases. These scientific advances coupled with “technological disruptions” are not only changing the way how the research has been conducted but are also playing a critical role in devising evidence based treatments. However, out of all the contributions, the most significant contribution of technology to scientific research is in the field of clinical diagnostics where data generated from a sample is assessed, visualized and interpreted. New insights from the vast amounts of laboratory data are generated through an organized path that we call “Sample-to-Insights”.

Sample is assessed, visualized and interpreted. New insights from the vast amounts of laboratory data are generated through an organized path that we call “Sample-to-Insights”.

‘Sample-to-Insight’ is a multi-step process, and needs a high end technological innovation and intervention. Instruments, Samples and Data form the three cornerstones of this process.

Sample-to-Insight multi-step process

Sample Management includes the storage, processing, submission and tracking. Instrument Management includes integration, experimental set up, metadata set up and processing. Finally, Data Management includes the management of all data that needs to be integrated, stored, managed and analyzed. Data Security, Advanced Analytics, Data Visualization, and Regulatory & Compliance form the other critical steps of Data Management.

Sample-to-Insights Workflow
The key components of Sample-to-Insight workflow include Experiment Planning, Sample Preparation, Sample Submission, Instrument Control & Data Acquisition, Data Processing, Data Analysis, Data Visualization, Data Reporting, and finally Data Access, Data Sharing and Data Security (Refer figure below).

Sample-to-Insight multi-step process

It is prudent to consider that in order to get useful insights from a sample, all the above stages of the workflow need to be integrated and brought onto a single platform.

Current Challenges
Currently many laboratories lack a robust mechanism to manage and analyze the data. Multiple disparate data sources that are part of a laboratory set up include sample data, experimental data, pre-clinical data, clinical data, submission data, FDA correspondence, and operational data, and pose significant challenges in lab data management. Moreover, standards around Data Access & Availability, Data Ownership, and siloed analysis mechanisms are some of the problems that laboratories face today.

In addition to the disparate data sources, another challenge that the labs face is that the data can exist in both a structured (e-Lab notebooks and other software) or an unstructured form (handwritten notes and lab notebooks). Hence, it is extremely difficult to decipher information from such diverse and critical sources of data, integrate it with other information systems, and enable a seamless flow of information from one system to the other.

Another challenge that the laboratories face is because of the multiple smaller software applications, which pose significant challenges in providing a unified picture of the sample data which is a prerequisite for drawing effective insights. Disparate data storage systems, file formats and standards, legacy systems etc., are some of the major factors that hinder the integrated data analysis.

Finally, there is often an inherent need to integrate a set of external data sets/databases or publications that is fetched and referenced as per need, resulting in large volumes of both internal and external data that are both equally important to derive useful insights.

Storage and Management of millions of data records is beyond the capacity of a single software application or a localized data system. A centralized information management system like Scientific Data Management System (SDMS) is a potential solution to address these challenges. This centralized software application facilitates a seamless flow of information across different systems, and manages and makes the data available anytime for efficient decision making.

This centralized system needs to address multiple aspects of data, starting from sample integration, instrument integration to data reporting, either through the creation of new application components or integrating legacy systems. Sample management, for example, that needs to be integrated into the centralized system for a seamless flow of sample information can be part of an existing LIMS System or a Biobanking System.

Sample to Insight solution

As more and more Life Sciences companies embark on a software driven Sample-to-Insights journey, we at Persistent are using our 25+ years of industry knowledge across areas such as Chromatography, Spectrometry, Molecular Biology, Gene Expression, Multi-omics data integration, and are partnering with world’s leading Biotech, Pharmaceutical, Analytical Instrument & Medical Devices and Diagnostics companies to innovate and drive processes to transform R&D, Manufacturing & Production and Product Engineering divisions to integrate business into a seamless Sample-to-Insight framework.

You May Be Interested In


REACHnet builds a comprehensive clinical health technology infrastructure, powered by Persistent Systems


Increasing patient access and patient centeredness through Cognitive Search


Persistent Systems helps Virginia Tech to make Genomics research transformational


Connected Moments – Design Thinking for Improved Patient Engagement in Healthcare


eNre – Bringing the power of digital to clinical trials


Genomics: Multi-omics Data to Actionable Insights

Start typing and press Enter to search

Contact Us
close slider

Contact Us
Have a question? Drop us a line and we will get in touch with you!

Yes, I would like Persistent to contact me on the information provided above. Click Here to read our full Privacy Notice.