

US-Based ISV

utilizes Lambda

to automate event

processing

© 2020 Persistent Systems Ltd. All rights reserved. 2

Contents

1 About the Client .. 3

2 Problem Statement ………………………………….. 3

3 What We Implemented ... 3

4 Outcomes and Benefits ... 5

© 2020 Persistent Systems Ltd. All rights reserved. 3

1 About the Client

The customer is an ISV in the United States that wanted to develop an artificial intelligence (AI)

parenting platform to address various parenthood challenges such as;

• Anxiety about child’s early stage emotional, cognitive well-being, and development

• Day-to-day lack of intimacy, engagement, and knowledge of their child’s activities

• Screen-based technologies and their impact on child’s social behavior

2 Problem Statement

The customer needed a serverless framework for handling multiple requirements such as codec

conversion and event processing for events collected from various mobile tablet, and desktop

application clients to do backend mobile application and video/image processing.

3 What We Implemented

Overview

The entire event pipeline was developed using Lambda. In total, 25 Lambda functions were

developed with 1 million invocations during the Beta phase and over 25 million invocations per

month in production.

Multiple solutions were implemented using Lambda functions:

• Codec conversions to convert the mobile video format (3GPP) to a more acceptable

format like MP4.

• User Sessionization to find out user activities and priorities in every session

• User location updates to send “unknown” location alerts for child safety

• Thumbnail generation for uploaded images captured by camera from application clients

• Event Pipeline processing to aggregate likes, views on the media contents

• EFK (ElasticSearch-Fluent-Kibana) pipeline for debugging, log collection and analysis

• Running transient EMR Spark jobs for recommendations based on certain number of

events in DynamoDB to run a machine learning (ML) model for content

recommendations based on recency

© 2020 Persistent Systems Ltd. All rights reserved. 4

AWS Lambda is triggered from many other AWS services such as S3, DynamoDB Streams,

API Gateway, SQS, SNS, SES, Cloudwatch, and ElasticSearch. Lambda output is written to S3,

DynamoDB, RDS, SNS, ElasticSearch, and Transient EMR jobs. Data processing on events

comes from API Gateway and video rendering events comes from S3. DynamoDB captures

events emitted by all application clients. Transient EMR Spark jobs are ran to train

recommendation models for the recent events. DynamoDB stream batches will trigger Lambda

functions which aggregates events per customer and writes back to DynamoDB. Once it

reaches the threshold of events per customer, Lambda checks if enough data for customers is

available in S3, then calls a transient EMR Spark job to train the recommendation model per

customer based on recent events.

Third party applications and solutions were used such as ffmpeg for video encoding, open

source python libraries for thumbnail generation, Google Cloud APIs - Cloud Vision, Places,

Location (Geocode and reverse Geocoding), Natural Language, Books APIs, and other third-

party APIs – Wikipedia, Oxford Dictionary, Meetup, Eventbrite.

Many AWS best practices were utilized on the project such as using VPC endpoint to access S3

and DynamoDB, using VPC peering to access EMR, creating transient EMR, using DynamoDB

streams batch as trigger, utilizing Lambda within VPC accessing EMR over VPC peered

network, using important configurations in S3 bucket or AWS Parameter Store and not in the

code, using Python or NodeJS to avoid code start issues, and instrumenting Lambda using X-

Ray for tracing.

© 2020 Persistent Systems Ltd. All rights reserved. 5

Solution Characteristics

The Persistent team did basic performance testing for workloads expected during the limited

beta production phase. Resource based IAM policies were defined for other AWS services to

invoke Lambda Functions with one IAM per function. Failed Lambda functions writes the

payload to an SNS topic and sends a CloudWatch alert and management of multiple

microservice functions was done using Github as code repository. The concurrency limit is

reserved for each function, so the impact is isolated to only that function if the number of events

surges for any reason. CloudWatch alarms are setup to notify events such as Concurrent

Executions or Invocations exceeds the threshold. Monitoring of alarms and metrics of AWS

Lambda functions is done using CloudWatch triggers and all types of CloudWatch metrics -

Performance, Concurrency and Invocation are used.

Lessons Learned

The Persistent team learned and implemented the following best practices:

• SNS for inter Lambda communication

• VPC endpoint to securely connect to S3 and DynamoDB

• DynamoDB streams batch mode to trigger Lambda

• CI/CD for Lambda so that code can be version controlled and deployed automatically

• Invoking transient EMR jobs from Lambda

4 Outcomes and Benefits

Originally, the customer had an objection for using Lambda as they wanted to keep platform

implementation cloud neutral, so that it can be ported to other public clouds should the need

arise. The Persistent team overcame this by keeping Lambda code in Github and having a

CI/CD process to automate Lambda deployment. Since code was written in Python, the

porting on other cloud equivalent services should be easy.

The platform was built on Persistent’s five pillars of operational excellence; security, reliability,

performance, efficiency, and cost optimization. After the project was complete, new event

processing requirements could be added for an existing event or new event without impacting

the existing pipeline. The platform saves 30% of effort in onboarding and processing new

events. The Persistent team calls this component the “Lambda Factory” in the platform.

© 2020 Persistent Systems Ltd. All rights reserved. 6

•

India

Persistent Systems Limited

Bhageerath, 402,

Senapati Bapat Road, Pune 411 016

Tel: +91 (20) 6703 0000

Fax: +91 (20) 6703 009

Email: info@persistent.com

About Persistent Systems

Persistent Systems is a global company specializing in solutions, software products, and

technology development services. Persistent Systems builds innovation that drives the business

of our customer’s enterprises with software at the core of their digital transformation. To learn

more, visit http://www.persistent.com

USA

Persistent Systems Inc

 Laurelwood Road, Suite 210, 2055

Santa Clara, CA 95054

Tel: +1 (408) 216 7010

Fax: +1 (408) 451 9177

Email: info@persistent.com

http://www.persistent.com/

