
10 Lessons for ISVs to Consider when
Containerizing Enterprise Software

© 2020 Persistent Systems Ltd. All rights reserved. 2

No matter whether your organization is focused on
developing software offerings delivered through the
cloud or on-premise, your total cost of ownership
(TCO) is on the rise — representing a challenge
both for the independent software vendors (ISV)
and end-user customers. Complexity, in the form of
upwardly spiraling requirements, concurrent users
and large amounts of domain data — along with a
host of other factors — is driving much of the trend.

From the operational expenses of running,
maintaining, and administering software to
infrastructure spending, those increased costs
negatively impact existing customers (through rising
license or subscription fees) and limit the ability
to win new customers — ultimately eroding your
profitability. You need solutions that can reduce your
TCO growth and help you move to a more variable,
controllable, on-demand model that maximizes your
ability to drive new revenue streams.

As your customers clearly know, there is an
inherent difficulty in making legacy software more
efficient — a fact that plays out daily within the
80% of big deployments that run in the field in
traditional IT sectors. Legacy software, developed
in the on-premise data center era, typically have a
large footprint in compute, memory, storage and
networking, making it a suboptimal solution for
modern needs and options.

In particular, the massive growth in networking
requirements have compounded the issue. Today’s
collaborative teams, spread across the globe,
are generating volumes of network requests
that developers twenty years ago couldn’t have
imagined. This unforeseen increase is unnecessary
slowdowns in low-latency networks, creating
frustration for developer and user alike.

Successfully managing software instances is also
a growing concern, due to the rapid increases in
software complexity that are driving up costs in all
aspects of software lifecycle support. Costs can rise
in each of the following areas, including:

The advent of cloud solutions offered hope in
mitigating those costs, but in many cases, they are
neither the only answer nor even the best answer.
Cloud costs have risen dramatically in recent years,
bringing with them a host of additional challenges,
including security concerns, configuration
complexities, and migration difficulties.

To address the seven challenges listed above,
automating this complexity is paramount. It needs
significant improvement in those workflows and
user experiences to hit that sweet spot.

Besides, today’s customers want options, whether
delivered via the cloud or on-premises. If your
development approach commits you to one delivery
model or the other, it will become increasingly
difficult to win new customers who expect choice.

Installation

Monitoring

Scaling

Upgrading software and migration of data
(if necessary)

Configuration

Troubleshooting

Capacity planning

The Shifting Landscape for Enterprise Software

© 2020 Persistent Systems Ltd. All rights reserved. 3

Software-as-a-service (SaaS) is a simple,
straightforward way to provide efficient service
with 24/7 availability, particularly in situations
where significant technology upgrades and other
investments would be required to
reduce TCO.

There are downsides to this approach, however.
While lift-and-shift to the cloud may have worked
for simple applications, benefits drop off significantly
for more complex applications — not to mention the
high cost of third-party management
in cases where SaaS operations and management are
being outsourced.

App modernization can be a suitable solution that
accommodates growth in the cloud platform and/or
if there is a business need (e.g, security) on-premises.
Beyond providing dedicated processing ability and
isolated compute power, here the downside falls on
the management aspect: There must be the desire
and capability to manage the software.

Realistically, however, most ISVs today need to
be able to deliver both: a viable SaaS or managed
service offering that provides a competitive cloud
entry point helps small to mid-sized customers, as
well as app modernization for customers who also
require an on-premises solution for security or other
business reasons.

As the market evolves, containerization bridges that
gap: a fully optimized, on-demand, and pay-as-you-
go solution that offers flexibility along with durable
improvements to TCO. The baseline concept here
is that the software must be cloud-ready for SaaS
offerings and managed services, while also working
seamlessly in the on-premises world. Ultimately, the
goal is to make complex things automatable so that
administrators do not need to be knowledgeable in
the minutiae of all the technology details.

For ISVs, the investment in cloud-readiness means
building on technologies that are cross-platform
capable: The ability to run your software on any
cloud provider is critical, and being independent
of infrastructure and runtime gives you and your
customers more flexibility to be successful. It also
accommodates the level of flexibility that companies
are demanding for efficiency and productivity while
giving the development organization full autonomy
over where they are investing, what infrastructure
they choose, and what platform the containers
run on.

We are already seeing this shift to IaaS, PaaS, and
container-as-a-service (CaaS) providers — with
companies authorizing individual business units
to provision on different cloud providers and form
centralized operations teams to manage their
projects on those cloud platforms.

Solution search: SaaS/managed service, app modernization
…or both?

© 2020 Persistent Systems Ltd. All rights reserved. 4

Strategy Migration Development Management

AI Analytics Blockchain Security IoT Quantum

Cloud Pak for
Applications

Cloud Pak for
Data

Cloud Pak for
Integration

Cloud Pak for
Automation

Cloud Pak for
Multi-Cloud
Management

Open Hybrid Multi-cloud Platform

IBM Public
Cloud

AWS Microsoft
Azure

Google Cloud Edge Private IBM Z
IBM LinuxOne
IBM Power
Systems

Consulting
Service

Advanced
Technologies

Cloud Native
Software

Foundation

Infrastructure

10 Containerization Lessons Learned

Containerization has become a major trend
in software development as an alternative
or companion to virtualization. It involves
encapsulating or packaging up software code and
all its dependencies so that it can run uniformly and
consistently on any infrastructure. The technology
is quickly maturing, resulting in measurable benefits
for developers and operations teams as well as
overall software infrastructure.

The following list of lessons learned for ISVs has
been formulated during Persistent’s five years of
containerization development, implementations,
and operations as an IBM Partner. While they apply
specifically to our experience in containerizing
products such as MDM CE and others, these best
practices are also global enough to apply to any
containerization strategy or hybrid multi-cloud
platform environment.

Containerization Optimization

Analyze and Prioritize Automation Workflows Package and Optimize

Monitor, Meter, and Monetize Integrate into the Platform

The basic idea is to continuously automate
critical and complex workflows by containerizing,
integrating, monitoring, metering and monetizing.
The lessons are described below in these key
categories.

Analyze and Prioritize Automation Workflows

1\ Focus holistically. As noted earlier, the first
priority is to identify the areas or processes
that need to be automated, i.e. installation,
configuration, monitoring, troubleshooting,
upgrading software and migration of data (if
necessary), scaling, and capacity planning.
This is not a time to be siloed within your own
organization or department. Input from your

© 2020 Persistent Systems Ltd. All rights reserved. 5

customers and internal stakeholders is a critical
piece of the puzzle, helping them prioritize the
work required to automate these complex tasks
and incrementally deliver them to market.

Package and Optimize

2\ Minimize the container size. The container base
image must be simple and small enough that it
can integrate well, taking advantage of process
isolation and the ability to be moved easily. Take
this opportunity to package only the required
software dependencies in your container image
to reduce the disk and memory footprint. This
may require some tactical refactoring of legacy
code to minimize the monolithic dependencies.

3\ Align to the right standards. Adherence to
Open Container Initiative protocols will ensure
that the standard-compliant containers you
build can be plugged into standard-compliant
platforms. Once you build a container image that
follows the standards, it fits easily into container
runtimes, regardless of the container platform
you choose.

4\ Keep data outside the container. The best
practice is to map data outside of the container,
not inside. This practice makes challenging
administrative use cases — such as backup,
restore, and disaster recovery scenarios — much
easier, because you can use standard data
replication across data centers to achieve it.

Integrate into the Platform

5\ Explore simplification platforms. Platforms with
robust DevOps functionality, such as Red Hat
OpenShift, can simplify the process and make
it easier to manage different environments.
Using your source control repository, they can
build a code, build a Universal Base Image (UBI)
and deploy it into a staging environment, run
automated tests, and deploy into production.
Other items that will come as part of a value-add
offering, but are challenging to develop on your
own from a free platform include:

These advanced features allow you to manage
any number of containerized application
instances without the need to code your own
Kubernetes scripts, for example.

6\ Think orchestration. With a simple image and
data partitioned outside, the next step is creating
an orchestration layer on a platform where you
can actually deploy. Many of the cloud providers
offer a first-class service for container runtimes,
although Red Hat OpenShift is becoming the
default standard for Amazon, Microsoft, and IBM
Cloud. Other options include Google, which
offers its own runtime service for containers, or
raw Kubernetes services offered, managed, and
maintained by companies such as Microsoft
and Amazon. The value-add of building an
integration into a premium platform such as Red
Hat OpenShift is that it allows you to define an
operator that controls and participates in CRUD
on your applications. If you choose a different
platform (and you don’t want to add to your
development tasks and TCO), ensure that it
includes the following value-add capabilities:

Ability to choose which version of your container
needs to be deployed

Role-based
access control

Data
privacy

Automatic
scaling

 Orchestration in deploying your container,
including a catalog to identify it

Security

Multi-tenancy

Automatic upgrades
as needed

Show it in
a catalog

Manage customizable
UI

Get detailed
processes

Make it available to
the end-user

Upgrade when
you want

Store
metadata

https://www.opencontainers.org/

© 2020 Persistent Systems Ltd. All rights reserved. 6

Monitor, Meter and Monetize

7\ Don’t forget to monitor performance. While
activating integrated application performance
monitoring might sound like a daunting task, it
can be a step-by-step process that becomes
more sophisticated as your company progresses
on its learning curve. Starting from the most
basic level of performance monitoring, most
services will send an alert with a note that simply
tells you there is an application problem based
on, for example, excessive CPU percentage. They
may not understand why your product is not
performing, however, and they won’t fix it for you
— so you’re on your own for troubleshooting.

8\ Instrument your code. To address the next level
up, understand the minimum characteristics
you want to monitor and instrument the code
accordingly, focusing on the items that have the
greatest impact. Minimal instrumentation with
key characteristics might include:

 \ Usage patterns (counts of projects, users,
active users, concurrent users, amount of
database growth, etc.), which allows you to
prepare for the future, plan for capacity, and
enforce best practices.

 \ Usage statistics on key workflows and license
consumption, which can become candidates
for the next round of automation and
monetization.

 \ Performance metrics (compute, CPU
memory, disk I/O transactional time, SQL
server time, and average response times,
etc.).

Red Hat OpenShift allows applications to
participate in a centralized logging and
monitoring system and contribute application-
specific metrics and associated alerts. It also
enables applications to use these custom
metrics in defining auto-scaling criteria for
your applications. Finally, keep in mind that
containerizing something does not change the
moving parts and the complexity — If you don’t
have meaningful data that you are bringing out
to make decisions on, you still have an issue and
trouble may lie ahead.

9\ Maximize value with dynamic functionality. One
of the key aspects that needs to be addressed is
the ability to dynamically control the compute
parameters that support your software. For
example, a built-in rapid allocation and metering
system that controls price based on compute
characteristics allows customers to pay for what
they use, which makes it far more attractive to
them. This method allows you to provision small,
medium and large deployments affordably,
with the ability to accommodate on-demand
increases in size as well as capping them off.
Note that this value-add is available in IBM® Red
Hat® OpenShift®, which allows you to take the
notion of a project and employs resource quotas
to define compute constraints for a given project.
This allows an ISV to have entry-level offerings
with fixed computes at a lower cost, eventually
getting customers to migrate to a pay-as-you-go
model. It also gives more visibility and accuracy
to central operations teams as they allocate
costs for their internal business units for resource
usage.

10\ Align to new pricing models. To enable efficient
monetization of core capabilities, you want
to move from traditional licensing models to
token-based licensing, in which the base features
of the software and automated administrative
workflows can be based on tokens. This provides
increased flexibility to customers who have
highly variable patterns of software use within
various projects and thereby enabling “the more
you use, the more you pay.”

© 2020 Persistent Systems Ltd. All rights reserved. 7

Benefits of Containerization

In the past few pages, we’ve outlined some of the
trends and opportunities in containerization, as well as
the challenges and best practices to consider when
implementing a hybrid multi-cloud strategy. In closing,
let’s view containerization within the framework of
where we started: the critical importance of addressing
your growing TCO and complexity.

Here’s a brief topline rundown of how containerization
can benefit your customers —and thereby provide
ISVs like you with a more compelling value proposition
during the sales process:

Better time to value. Containerization represents the
next generation in the hybrid cloud universe, offering
improved resilience and repeatability of installs and
upgrades for your end customers. In addition to the
performance advantages, it reduces the skill, expertise,
and effort needed to set up and maintain complex
distributed environments. All of this translates to easier
tilt-ups, faster time to market and better profitability for
your customers — which means happier customers and
improved sales and profitability for you.

Increase efficiency. By reducing redundancies and
simplifying complex processes, containerizing enables
your customers to lower their administrative costs,
operations and IT staff requirements, and machine
costs. Containerization also represents a more
sophisticated and streamlined approach to multi-
tenancy than virtualization alone.

Improve qualities of service. Containerization offers
across-the-board improvements that your internal
developers and your customers will appreciate –
scalability, stability, self-healing, and dynamic capacity
adjustment. By reducing complexity and potential
problems, it can also serve to shorten admin outage
windows.

Ideal for hybrid cloud deployments. Containerization
eliminates the challenges of trying to adapt different
software for different clouds or providers, whether
on-premise, private clouds, or public clouds. For IBM
Cloud users, there’s an added benefit of self-service
capabilities support.

One version, two models of delivery. Because your

SaaS offerings and on-premises offerings are built on
the same architectural principles, there’s no need to
have or maintain two different versions of software —
which means more profitability from a single piece of
intellectual property. Build it once, re-use it in different
contexts, and launch future updates without the
redundancies or confusion that can occur from
parallel development tracks.

Move from fixed licensing to token-based licensing.
Legacy software has long been restricted to fixed or
flex-based licensing — leaving money on the table and
not always adequately charging customers for their
usage. Containerizing enables you to charge for every
value-add that’s built in, even at finest level
of automation.

Not only does that increase your profitability, it’s a more
transparent payment system for customers, because
they know what they are spending. Bottom line, for
every incremental value-add and new release that’s
built on the platform, token-based licensing increases
the potential revenue.

Improve your competitive position vs. pureplay and
legacy-free ISVs. Containerization opens your doors
to being more flexible in how you are competing.
By leveraging the best aspects of SaaS and on-
premises delivery methods, you can be more agile and
responsive — providing your customers exactly what
they need, exactly when they need it — at a lower TOC
than ever before.

© 2020 Persistent Systems Ltd. All rights reserved.

India
Persistent Systems Limited
Bhageerath, 402,
Senapati Bapat Road
Pune 411016.
Tel: +91 (20) 6703 0000
Fax: +91 (20) 6703 0008

USA
Persistent Systems, Inc.
2055 Laurelwood Road, Suite 210
Santa Clara, CA 95054
Tel: +1 (408) 216 7010
Fax: +1 (408) 451 9177
Email: info@persistent.com

About Persistent
Persistent Systems (BSE & NSE: PERSISTENT) builds software that drives our customers’ business; enterprises and software product companies
with software at the core of their digital transformation.
www.persistent.com

Vishy Ramaswamy is a distinguished engineer in the ELM development group of IBM Alliance Division in
Persistent. In this capacity he is responsible for defining and managing the overall architecture of the IBM®
Engineering Requirements DOORS® Next Generation product and the lead architect for project Slipstream,
which is the modernization and containerization initiative for all of the IBM IoT ELM Product Suite, the
encompassing DevOps strategies and associated value-add administrative workflows. Vishy has been working on
containerization-related initiatives for the last five years.

Vishy’s career in software development spans 24 years, during which time he has worked in a technical
leadership role on products in the application lifecycle management space and software services related to the
telecom, wireless, health care, federal government, and defense industries.

About the Author

