
A tool-first, automated
approach to scaling your
DevSecOps organization
Leveraging ExtenSURE — Persistent’s Intelligent Product Engineering Framework

© 2021 Persistent Systems Ltd. All rights reserved. 2

Changes in current development environments and the
importance of DevSecOps

Software Development Lifecycle has completely changed over
the last few years. The adoption of agile project methodology has
become increasingly critical to deliver products faster and reduce
time to market. This needs to be done with the best code quality,
zero security vulnerabilities, and the ability to scale as the usage
of the application increases.

All this complexity has necessitated the need to adopt
tools, technologies, and practices that can cover the
breadth of software development lifecycle (SDLC)
and offer automated validations, testing, and
remediation wherever possible.

DevSecOps or Secured SDLC (SSDLC) is a
fundamental shift in how organizations manage
software engineering. It is driven by the fact that
the business needs to move rapidly to develop new
software faster for customers which is resilient, agile,
and free of any vulnerabilities or license risks.

Despite the notable progress we’ve witnessed many
organizations still struggle to move beyond the middle
stages of DevOps. They can struggle to scale their
DevOps methods of working beyond development,
operations and security teams to evolve into a scaled
DevSecOps organization.

But some organizations do succeed. They expand
DevSecOps practices beyond the initial
early-adopting teams, continuing to evolve
and improve across the organization. What makes
the difference?

© 2021 Persistent Systems Ltd. All rights reserved. 3

Everyone who uses DevSecOps is aware of the DORA metrics created through six years’ worth of surveys conducted
by DORA (DevSecOps Research and Assessments).

Using these metrics, development teams are categorized into elite, high, medium, and low. While measuring
these metrics is essential, what is critical is to know the value and benefits of doing things as part of software
delivery which helps us become elite performers.

Code
quality

Clean architecture which
enables scrum teams
to work efficiently and
resolve issues early.

 Throughput

Measured using deployment frequency (DF), lead
time for changes (MLT)

Ability to build
in parallel

The ability to develop
and manage different
artifacts as independent
components.

 Stability

Measured using the time to restore service
(MTTR), change failure rate (CFR).

A high degree
of automation

Automated code reviews,
test automation, and
deployment.

Measuring the scale and impact of your DevSecOps
using DORA metrics

Scaling DevSecOps practices

Applying DevSecOps at scale requires developing
the process to support the organization in releasing
features on a more frequent basis at the program
/ portfolio level. Before applying these principles,

leadership must ensure the team has a solid
foundation and the following fundamentals
are in place:

1 2 3

© 2021 Persistent Systems Ltd. All rights reserved. 4

Scale DevSecOps using ExtenSURE — Persistent’s Intelligent
Product Engineering framework

ExtenSURE uses a tool-first, engineering-driven approach to scale DevSecOps. It enables teams to onboard
applications, run them through an automated CI / CD pipeline, and significantly improve efficiencies by:

The key tenets of ExtenSURE’s approach

Baselining and
enhancing code
quality:

\ Code complexity
and hotspots

\ Code contributors
and team
dynamics

\ Code structure
and dependencies

\ Reverse-
engineering
architecture

\ Fitness tests
for architecture
patterns

Defect prevention
over defect
detection:

\ Static Application
Security Testing
(SAST)

\ Dynamic
Application
Security Testing
(DAST)

\ Software
Composition
Analysis (SCA)

\ Infrastructure-as-
a-Code Security
Analysis

Intelligent
operations:

\ Resiliency and
Observability
using ‘Chaos
Engineering’

\ Production
Application
Monitoring (APM)

\ User Experience
Monitoring

Automated
deployment
pipeline

\ Automated
Environment
and Pipeline
Provisioning

1
Increasing
speed of
deployment.

2
Improving
software stability
and lowering
change failure
rates.

3
Building security
in from the start
and spending
less time fixing
security issues.

4
Monitoring
errors in each
deployable
pre-production
environment.

5
Detecting
production
errors and
assessing the
impact in real-
time.

© 2021 Persistent Systems Ltd. All rights reserved. 5

Code complexity
and hotspots
\ Assesses current technical

debt.

\ Identifies and prioritizes
critical hotspots in code,
based on previously
deployed fixes.

\ Identifies and prioritizes
complex modules.

Code contributors
and team dynamics
\ Identifies top code

contributors.

\ Helps understand
team dynamics and
dependencies.

\ Accurately measures
flight risk by combining
knowledge risk view
analysis with an individual
knowledge map.

Code structure
and dependencies
\ Helps identify

dependencies across
various modules to
understand the structure
of the product codebase
and reverse engineer
architecture and design.

\ Automatically generates
technical documentation
for unknown / non-
documented databases.

\ Extracts business rules from
application codebase to
understand and document
functionality.

It helps prioritize and focus on crucial code modules to ensure the engineering team does not just fix superficial
bugs but looks deeper into the issues and tackles them at the root.

Why ExtenSURE’s codebase analysis phase is a crucial first step

Baselining and enhancing code quality

For an application that has been developed over
many years, runs into millions of lines of code, and has
hundreds of developers who contributed, it becomes
important to have an excellent understanding
of the code based on the evolution of the code.
This gives the ability to predict its behavior and find
hotspots that are prone to defects. This baselining
can futureproof the codebase and prevent
bottlenecks and maintenance issues.

The ExtenSURE framework begins with an in-depth
analysis of the codebase using automated product
analysis and observability tools. The analysis covers
application architecture, static code and data analysis,
code coverage, code complexity, log analysis,
documentation, bugs, and security vulnerabilities.
Based on this analysis, key vectors such as complexity
and churn scores can be calculated for various code
modules of the product codebase. These vectors help
generate actionable insights to plan and prioritize
activities for improving the quality of the codebase.

© 2021 Persistent Systems Ltd. All rights reserved. 6

Analyzing the code changes when merging code
is an excellent idea. However, it adds an extra step
before the developer is aware of the issues in their
code. To enable developers to truly own their

code, these issues need to be highlighted at the
code writing stage itself. ExtenSURE leverages IDE
extensions, enforcing code hygiene rules in the code
quality gate analysis.

© 2021 Persistent Systems Ltd. All rights reserved. 7

Baselining and improving overall codebase health is the
first step towards DevSecOps transformation, and this
crucial first step is aimed at achieving that through:

\ Automated code reviewed: Use analysis results
from the tool as early feedback on code.

\ Issue prioritization: Prioritize code that is changing
most frequently.

\ Developer sensitization: Educate developers
towards better coding practices.

\ Consistent quality standard: Enforce consistent
quality standards across teams.

\ Visibility: Provide visibility to everyone in the team
through standard, quality metrics.

Consider a portfolio of applications that have been
developed over many years by several developers using
different technology stacks. Many of these developers
who wrote the code would have either moved on and
will not be available with the current team.

The ExtenSURE framework provides the ability

to auto reverse-engineer all database structures, code
components, and interdependencies in complex
software systems down to the tiniest details and
creates accurate, interactive architecture blueprints.
Individual developers can see how their changes
impact the architecture and indicate the changes
to the affected team.

Reverse-engineering architecture

© 2021 Persistent Systems Ltd. All rights reserved. 8

Fitness functions describe how close an architecture
is to achieving an architectural aim. Regardless of the
application architecture (monolith, microservices,
or other), fitness function-driven development can
introduce continuous feedback for architectural
conformance and inform the development process
as it happens, rather than after the fact.

ExtenSURE leverages fitness testing for an
architecture patterns approach and integrates
this with unit testing using libraries like ArchUnit
(Java) and NetArchTest (.NET) for automatically
testing architecture and coding rules. It also checks
dependencies between packages and classes, class
design, naming and dependency, and more.

TestCase Name Status Exception

BasicTest.NamingConvention.
controller_should_be_suffixed

Fail Architecture Violation [Priority: Medium] – Rule classes ta=hat
reside in a package ‘…controller…’ should have simple name
ending with ‘Controller” was violated (1 times): simple name of
demo.controller.demo does not end with ‘Controller’ in (demo.
java.0)

BasicTests.NamingConvention.
interfaces_with_repository_
should_be_in_a_repository_
package

Pass

BasicTests.NamingConvention.
service_should_be_infix_with_
service_word

Pass

BasicTests.CycleCheck.cycle_
check

Fail Architecture Violation [Priority: MEDIUM] – Rule ‘slices matching
‘…demo…(*)…’ should be free of cycles’ was violated (1 time):
Cycle detected: Slice firstservice ->
 Slice secondservice ->
 Slice firstservice
1. Dependencies of Slice firstservice
 – Field <demo.service.firstservice.Firstservice.obj> has type
<demo.service.secondservice.Secondservice> in (FirstService.
java:0)
2. Dependencies of Slice secondservice
 - Field <demo.service.secondservice.SecondService.obj> has type
<demo.service.firstservice.FirstService> in (SecondService.
java:0)

Fitness tests for architecture patterns

© 2021 Persistent Systems Ltd. All rights reserved. 9

Test # Passed # Skipped # Failed Time (ms) Included Groups Excluded Groups

Suite

CycleCheck 0 0 1 69

DependencyCheck 1 0 0 27

LayerAcess 1 0 0 11

NamingConvention 2 0 1 8

LocationChecks 3 0 1 18

Total 7 0 3 133

Class Method Start Time (ms)

Suite

CycleCheck — Failed

BasicTests.CycleCheck cycle_check 1625806644651 57

DependencyCheck — Passed

BasicTests.DependencyCheck entity_class_should_not_depend_on_anyone 1625806644760 26

LayerAcess — Passed

BasicTests.LayerArchitecture layer_architecture 1625806644806 9

NamingConvention — Failed

BasicTests.NamingConvention controllers_should_be_suffixed 1625806644836 1

NamingConvention — Passed

BasicTests.NamingConvention

interface_with_repository_should_be_in_a_re-
pository_package 1625806644838 2

service_should_be_infix_with_service_word 1625806644840 2

© 2021 Persistent Systems Ltd. All rights reserved. 10

Before

After

Software engineering teams must maintain a testing
mindset and rigor as early as the design phase,
through deployment and even beyond to production
— monitoring production data and logs and creating
a feedback loop to engineering teams.

An automated ‘Shift Left’ approach to quality
engineering focuses on reliability, security, and
accessibility at all stages of the design, development,
and deployment process. It ensures accelerated
software releases and predictability in product
releases by eliminating nasty surprises and helping
to prevent cost overruns.

This approach primarily requires an automation-
first approach by leveraging our AI-ML expertise
coupled with best-in-class tools for a strong testing
mindset across every stage in the software product
engineering lifecycle.

The ExtenSURE framework introduces comprehensive
testing as early as the design phase and continues
post-deployment.

ExtenSURE, as part of its CI-CD pipeline, leverages
SonarQube and CodeScene to do a comprehensive
validation of the code against security vulnerabilities,

identify hotspots, and code health for these hotspots,
look at team dynamics, and provide remediation
measures.

Defect Prevention over Defect Detection

Static Application Security Testing (SAST)

© 2021 Persistent Systems Ltd. All rights reserved. 11

The framework enforces robust DAST during the integration testing phase by leveraging OWASP ZAP
(Zed Attack Proxy) to highlight low, medium, and high risks with suggestions to fix them.

The extensive use of open-source libraries and Docker
images brings added risks of open library vulnerabilities,
license compliance risks (MIT, Apache, GPL), and

security vulnerabilities. The framework leverages
WhiteSource, CAST highlights to perform detailed
analysis, fixing issues early during software development.

SAST should be performed early and often against
all files containing source code. DAST should
be performed on a running application in an

environment like production. The best approach
is to include both SAST and DAST in your application
security testing program.

Examples of the alerts that provide valuable insights for the development team to look at and fix before the application gets deployed to production.

Name Risk Level Number of Instances

Content Security Policy (CSP) Header Not Set Medium 12

Cross-Domain Misconfiguration Medium 52

Source Code Disclosure — Java Medium 19

Vulnerable JS Library Medium 1

X-Frame-Options Header Not Set Medium 10

Dangerous JS Functions Low 4

Permissions Policy Header Not Set Low 34

Private IP Disclosure Low 1

Server Leaks Version Information via “Server” HTTP Response Header Field Low 56

X-Content-Type-Options Header Missing Low 50

Dynamic Application Security Testing (DAST)

Software Composition Analysis (SCA)

© 2021 Persistent Systems Ltd. All rights reserved. 12

The National Security Agency (NSA) and the
Cybersecurity and Infrastructure Security Agency
(CISA) released a cybersecurity technical report,
“Kubernetes Hardening Guidance,” in August 2021.
This report details threats to Kubernetes environments
and provides configuration guidance to minimize risk.

The framework recognizes the role of IaaC in securing
cloud-native environments early on and delegates

security ownership to individual contributors while
also distributing it across existing frameworks within
CI/CD pipelines.

The ExtenSURE framework shifts security feedback
further left by integrating Checkov and other relevant
tools. Checkov includes over 200 new policies and a
Docker file scanner that help ensure container images
are built securely, without misconfigurations.

Some of the tests which must be performed in accordance with NSA and CISA guidance are:

Pipeline checkov-analysis

Stage View

Non-root
containers
and rootless
container
engines.

Immutable
container
filesystem.

Privileged
containershost
PIDD, hostIPC
privileges.

hostNetwork
access.

Ingress and
Egress blocked.

Infrastructure-as-a-Code Security Analysis

© 2021 Persistent Systems Ltd. All rights reserved. 13

All Failed Tests

© 2021 Persistent Systems Ltd. All rights reserved. 14

Intelligent Operations

The framework uses principles of chaos engineering
to stress-test applications and infrastructure for unknown
unknowns. It simulates extreme failures and edge cases,
preparing for issues under scenarios such as:

\ Application behavior when the CPU utilization
reaches 100% — Does it auto-scale or crash?

\ Application behavior when 30 – 40% packets drop
for some microservices — Slowness observed and
possible impact on NPS.

\ Application behavior when a critical infrastructure
pod is suddenly shut down.

Resiliency and Observability using ‘Chaos Engineering’

Number of Healthy Hosts

CPU Utilization

Example — Real-time application behavior when one of the VMs is shutdown

© 2021 Persistent Systems Ltd. All rights reserved. 15

Observing how systems react to such failures allows teams to find ways to improve their resilience around
metrics such as:

Uptime: Lost revenue and
added costs.

Meantime between failures
(MTBF): Customers attrition.

Meantime to resolution
(MTTR): Fixing defects
or developing new
functionalities.

© 2021 Persistent Systems Ltd. All rights reserved. 16

The framework prioritizes monitoring the production
application by leveraging Azure Application Insights
to monitor production applications 24/7 for security

issues and API failures to ensure robust application
performance after deployment.

Production Application Monitoring (APM)

© 2021 Persistent Systems Ltd. All rights reserved. 17

The ExtenSURE framework leverages Azure Application Insights to instrument the production application
telemetry and monitors the user analytics.

Beyond monitoring the application’s performance,
it is also essential to observe how an application
is being used and navigated through, and which
channels are being used more in omnichannel

applications. This information helps improve the user
experience by continuing to enhance the application
as per the analysis.

User Experience Monitoring

© 2021 Persistent Systems Ltd. All rights reserved. 18

ExtenSURE leverages a software engineering mindset to build multiple automation blocks using infrastructure-
as-code, pipeline-as-code, and configuration-as-code to stitch the e2e approach by leveraging dockers, ansible
and terraform templates.

This allows software engineers to request and provision resources on-demand without system administrators
doing this manually, significantly helping scale and speed up operations across different environments. This also
helps eliminate dependencies and bottlenecks for a software development team waiting for resources from
a separate system administration team.

\ IaaC solution drastically reduces the manual efforts
(> 90%) by efficiently and consistently provisioning
on-demand, pre-configured dev/test environment
blueprints.

\ Enables CI / CD ramp-up exponentially across
project teams. The overall time to setup and
provide a containerized tooling stack of

opensource offerings is achieved in a matter of
minutes versus a manual approach taking days.

\ The 1-click environment automation pipeline
solution is extensible by customizing the DevOps
cartridges to the needs of a given technology
blueprint (both cloud and on-prem).

Environments would be required to execute a large number of automated test cases on an ongoing basis and
need to be as much like production as possible to detect issues early. Consider the following when provisioning
the environment:

1\ The orchestrated installation of software, parallel
installation, and handling dependent applications.

2\ Tools for monitoring the infrastructure and
application, including the log and event collection.

3\ Environment creation needs to be automated
and version-controlled. Scripted environments
approach would create a script that can be
executed on a server or virtual machine to install /

configure the system. Configuration management
tools like Chef and Puppet would help in creating
the scripts and storing them under source control.

4\ Consider having simulators and emulators which
help increase test coverage and provide feedback
to resolve any defects early.

5\ Containers provide a way for applications to be
portable and easily managed.

Automated Deployment Pipeline

Automated Environment and Pipeline Provisioning

© 2021 Persistent Systems Ltd. All rights reserved.

About Persistent
With over 14,500 employees located in 18 countries, Persistent Systems is a global services and solutions company delivering Digital Engineering
and Enterprise Modernization. We combine deep technical expertise and industry experience to help our clients anticipate what’s next and develop
solutions that create unique competitive advantage. Persistent was named to the Forbes Asia Best Under a Billion 2021 list, representing consistent
top-and bottom-line performance as well as growth.

India
Persistent Systems Limited
Bhageerath, 402
Senapati Bapat Road
Pune 411016
Tel: +91 (20) 6703 0000
Fax: +91 (20) 6703 0008

USA
Persistent Systems, Inc.
2055 Laurelwood Road, Suite 210
Santa Clara, CA 95054
Tel: +1 (408) 216 7010
Fax: +1 (408) 451 9177
Email: info@persistent.com

www.persistent.com

With the changing dynamics of software development, it’s critical to implement a DevSecOps pipeline that can
address multiple business needs without burdening the engineering teams.

\ Adopt a shift left approach for your SDLC.

\ Ensure that the development pipeline looks at
resiliency, observability, and security as critical
elements rather than afterthoughts. The cost of
remediating any kind of defects or issues in post-
production is far higher compared to addressing
it in the earlier stages of the SDLC.

\ Adopt practices that help do architecture
engineering and analysis of the source code
for better knowledge management, which will
also help reduce technical debt and keep code
quality higher.

\ Look at the evolution of the code and not just
static code for better team management and
prioritizing the technical debt.

\ Automate whatever is possible: code quality
checks, security, infrastructure deployment,
pipeline deployment.

Conclusion

